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Abstract5

In this paper, wintertime precipitation from a variety of observational datasets,6

regional climate models (RCMs), and general circulation models (GCMs) is aver-7

aged over the state of California (CA) and compared. Several averaging method-8

ologies are considered and all are found to give similar values when model grid9

spacing is less than 3◦. This suggests that CA is a reasonable size for regional10

intercomparisons using modern GCMs.11

Results show that reanalysis-forced RCMs tend to significantly overpredict CA12

precipitation. This appears to be due mainly to overprediction of extreme events;13

RCM precipitation frequency is generally underpredicted. Overprediction is also14

reflected in wintertime precipitation variability, which tends to be too high for15

RCMs on both daily and interannual scales.16

Wintertime precipitation in most (but not all) GCMs is underestimated. This is17

in contrast to previous studies based on global blended gauge/satellite observations18

which are shown here to underestimate precipitation relative to higher-resolution19

gauge-only datasets. Several GCMs provide reasonable daily precipitation distri-20

butions, a trait which doesn’t seem tied to model resolution. GCM daily and21

interannual variability is generally underpredicted.22

2



1 Introduction23

In recent years, the focus of climate science has shifted from proving/disproving the24

existence of global warming to providing guidance for climate change adaptation planning25

(Shukla et al., 2009). This new role is more challenging because climate impacts vary26

from region to region and depend not just on the sign but also on the magnitude of27

future change. General circulation models (GCMs) are our best tools for forecasting28

future climate, but vary in the amount and geographical distribution of their predicted29

changes. In the face of this uncertainty, model intercomparisons provide a critical sense30

of the the range of possibilities confronting us.31

A key problem with GCMs is that their grid spacing is typically measured in hundreds32

of km, which is too coarse to capture regional features (such as lakes or mountains)33

that may play a central role in determining how climate change affects our day-to-day34

lives. This is a particular problem for precipitation (Pr), which depends strongly on35

local topography. In order to obtain information at the needed scales, GCM output is36

often downscaled to finer resolution. This can be done through the use of statistical37

relationships between GCM-scale and fine-scale climate variables or by running a high-38

resolution regional climate model (RCM) forced at the boundaries by GCM data. Both of39

these techniques have drawbacks. Statistical downscaling methods can only be trained on40

current climate data, so it is unclear whether the relationships underlying any particular41

method will continue to hold in a different climate. RCM predictions are uncertain42

because their boundary condition treatment and physics are complex and imperfect.43
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Because RCMs present both benefits and drawbacks relative to GCMs, it is useful to44

assess the value they add. There are two ways that RCMs are expected to add value.45

First, RCMs provide information on scales too small to be resolved by GCMs. The46

validity of this benefit is irrefutable, and by itself justifies the use of RCMs by researchers47

interested in local climate. The second expectation is that RCMs are more accurate48

because they better resolve physical processes and the local terrain. This means that49

even when averaged to GCM scale, downscaling should in theory yield better results. The50

physical processes controlling Pr are in particular expected to improve with resolution51

because Pr depends heavily on topography (which becomes more realistic at higher52

resolution) and because a larger fraction of precipitation is explicitly resolved at higher53

resolution, reducing dependence on the (more empirical) convective parameterization.54

Expectation of improved orographic Pr simulation at higher resolution is pervasive in55

the literature (e.g. Tibaldi et al., 1990; Leung and Ghan, 1995; Brankovic and Gregory,56

2001; Rauscher et al., 2009).57

There are already many papers showing that dynamical downscaling adds value, but58

most have focused on metrics that reward RCMs for having output at higher resolu-59

tion (e.g. by comparing against high-resolution or point measurements or by praising60

RCM maps for their fine spatial structure). Since these studies convolve the two types61

of “added value” noted above, they fail to show whether downscaling actually improves62

large-scale accuracy. GCM-scale improvement can be gleaned from studies that consider63

regional averages. For example, Christensen et al. (1998) find RCM Pr bias over Scandi-64
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navia to be worse than its forcing GCM, but suggest that this could be due to problems65

with the observations. Leung et al. (2003) find downscaling to increase precipitation66

(Pr) bias over the Columbia River basin, but to decrease error over the Sacramento/San67

Joaquin area. In Duffy et al. (2006), Pr from 4 RCMs averaged over the Western United68

States fail to improve upon the results from their driving GCMs. Seth et al. (2007) found69

their RCM to have trouble reproducing the annual cycle of Pr over 4 South American70

subregions, adding little value except in Northeast Brazil. Jacob et al. (2007) compute71

Pr bias for 13 different RCMs over 8 European subregions (as part of the PRUDENCE72

project); downscaling reduces bias in just over half of their cases. Sylla et al. (2009)73

show mixed benefits from downscaling over 8 African subregions.74

None of the aforementioned studies focus on the value added at the GCM scale75

and most make no explicit mention of the differences between results from downscaling76

versus from the driving GCM. Caldwell et al. (2009) (hereafter C09) computed regional77

averages for a particular RCM/GCM combination over California (CA) with a focus on78

GCM-scale improvements; they conclude that their regional model had generally worse79

Pr bias than its forcing GCM. This study examines whether the C09 result is typical for80

GCM/RCM pairings over CA.81

Lack of improvement in RCMs could come from several sources. For example, spec-82

ification of lateral boundary conditions for limited area models is still imperfect (e.g.83

Staniforth, 1997). Additionally, model performance may actually not be improved by84

increased resolution as commonly expected. This has been investigated in a variety of85
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previous studies (using both RCMs and GCMs) and is nicely summarized in Rauscher86

et al. (2009) (hereafter R09). Briefly, many studies show higher resolution to improve Pr87

simulation (e.g. Colle et al., 2000; Mass et al., 2002; Duffy et al., 2003; Iorio et al., 2004;88

Gao et al., 2006; Rojas, 2006). Other research (e.g. Pope and Stratton, 2002; Leung89

and Qian, 2003) find little improvement or even degradation in Pr at higher resolution.90

Results seem to be regionally and seasonally dependent. Duffy et al. (2003) find greatest91

improvement during fall and winter, which they attribute to the fact that convective92

(parameterized) Pr is less important during these seasons. R09, however, find no im-93

provement with resolution in winter, with some in summer. Discrepancy between these94

studies could be due to diminishing returns at higher resolution (as noted by Colle et al.,95

2000; Mass et al., 2002): R09 compares 25 km and 50 km RCM simulations, while Duffy96

et al. (2003) compare GCM runs at 55 km, 75 km, and 310 km. This study adds to the97

discussion by examining whether resolution is the leading indicator of Pr bias across a98

variety of models.99

Another motivation for this work was the realization that most climate models (par-100

ticularly RCMs) overpredict wintertime Pr over the W coast of the US (C09 and ref-101

erences therein; Leung et al., 2003; Coquard et al., 2004; Phillips and Gleckler, 2006).102

This seems to also be the case for other coastal regions (e.g. R09; Christensen et al.,103

1998), but doesn’t hold for inland mountain regions (Rasmussen, 2009). There is some104

evidence that overprediction increases at higher resolution (e.g. Colle et al., 2000; Mass105

et al., 2002; Leung and Qian, 2003). A limited number of studies suggest that this effect106
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is due to sensitivity of physical parameterizations rather than increased sharpness of107

topography (Giorgi and Marinucci, 1996; Han and Roads, 2004; Gao et al., 2006).108

In this study, we compare CA-average wintertime Pr as simulated by a large number109

of RCMs and GCMs in order to assess the consistency of RCM overprediction and to get110

a better sense of the benefits of resolution and downscaling. We focus on CA because its111

huge irrigated-agriculture industry, large population, and subtropical position place great112

demands on its water resources. Additionally, CA is interesting because downscaling is113

expected to add the most value in regions like CA which have complex topography,114

yet the above studies suggest that this expectation may not be borne out. We focus115

on wintertime precipitation because this is when CA gets the bulk of its water supply.116

Statewide averages are used because CA is large enough to be resolved by current-117

generation GCMs but small enough to be meaningful as a climatic unit. We evaluate118

model ability to capture the observed CA-average Pr statistics rather than ability to119

reproduce temporal or spatial anomaly patterns because:120

1. The temporal evolution of our GCM runs are only constrained by SST and sea ice121

distributions, so can’t be expected to match any particular pattern of temporal122

evolution,123

2. Focus on scales resolved by all models precludes spatial anomaly evaluation on124

smaller scales and focus on CA precludes analysis on larger scales.125

Evaluation of model response to climate forcing would be a better test of ability to predict126

climate change, but (as typical for climate studies) appropriate forcing response data is127
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not available. Even though some of the issues uncovered in this study can be masked128

by bias correction, their analysis is useful because bias is the physical manifestation of129

errors in model physics, which means that a model with a bad mean state is unlikely130

to simulate climate change realistically. Additionally, the nonlinearity of atmospheric131

processes means that even a perfect model would get the wrong climate response if its132

initial state was inaccurate.133

Experimental design and datasets used are explained in the next two sections. This134

is followed by the results section (broken into subsections dealing with mean bias, prob-135

ability distributions, and variability) and followed up by conclusions.136

2 Methodology137

As noted in the introduction, evaluating whether downscaling actually improves upon138

resolved-scale GCM results requires comparison at a scale resolved by both the RCM139

and its driving model. We use regional averaging because it meets this requirement,140

allows for quick and easy comparison of data on differing grids, and reduces model noise.141

There are also drawbacks associated with regional averaging. One downside to this142

approach is that it hides information on sub-regional spatial scales. An insidious example143

of this was found in C09, where GCM performance was found to best that of an RCM144

partially because GCM bias spread over a larger area which fell partly outside of the145

study area.146

Analysis of the CA average is also potentially complicated by the fact that the factors147
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controlling northern and southern CA climate are somewhat different. To the extent that148

GCM data can be trusted on smaller scales, it appears that GCMs and RCMs have similar149

dry biases in southern CA and differ mainly in performance in the north and central part150

of the state (not shown). For this reason and because southern CA precipitation is only151

a small contributor to the statewide total (e.g. C09), the results shown here can be152

thought of as dominated by contributions from the northern and central portion of the153

state.154

Another challenge is deciding how to actually do the averaging. For grid cells con-155

tained entirely within the averaging region, this is straightforward. However, even at 50156

km spacing only about 60% of the grid cells touching CA would fall into this category157

(Table 1). Thus it is clear that the utility of regional averaging depends on our ability158

to properly treat cells straddling the regional boundary. Proper treatment of bound-159

ary cells, however, is a philosophical issue in the sense that the averaging strategy of160

choice will depend on what information is assumed to be carried by model grid cells. In161

this study, the absence of an optimal averaging strategy is handled by applying several162

reasonable methodologies and using inter-method agreement as a measure of averaging163

uncertainty.164

One approach is simply to compute the cell-area weighted average of all cells whose165

centers lie within the state. An illustration of this method (hereafter the simple method)166

is provided in Fig. 1. The simple method is attractive because it is easy to implement,167

but suffers from the flaw that a minute shift in cell position may determine the inclu-168
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sion/exclusion of a cell. An approach that avoids this sensitivity is to weight boundary169

cells by the fraction of their area which is contained in CA. Computing fractional areas170

is challenging, however, particularly for a region as complicated as CA. A good approx-171

imation to this method that is much easier to implement is to regrid the data to very172

fine resolution, then to apply the simple method described above to the fine-scale data.173

If the regridding method conserves area averages, the resulting CA average differs only174

from fractional weighting through error induced by applying the simple method to the175

fine-resolution grid (which approaches zero as the fine-resolution grid spacing becomes176

small). We implement such a technique (hereafter the conservative method) using the177

regridding scheme of Jones (1999) and mapping all data to the uniform 1/4th degree grid178

used by the National Oceanographic and Atmospheric Administration (NOAA) Climate179

Prediction Center (CPC) Unified observations described later.180

Conservative regridding is appropriate if model data is assumed to be uniformly dis-181

tributed within each grid cell, but may give misleading results if the field of interest182

in actuality varies smoothly in space. In this case, a method that takes relationships183

between neighboring cells into account may be more appropriate. Bilinear interpola-184

tion is a simple method that does this. This technique is also of interest because it is185

much easier to implement than conservative regridding and is therefore more likely to186

be used. Including this method in our study allows us to test whether the complexity of187

conservative regridding is warranted.188
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3 Data189

For this study, regional model data is taken from North American Regional Climate190

Change Assessment Program (NARCCAP) Experiment 1 output which is publicly avail-191

able at http://narccap.ucar.edu/. This data consists of 6 hrly output for 1981-2004 from192

6 different RCMs forced by sea surface and lateral boundary conditions supplied by the193

National Center for Environmental Prediction (NCEP) Reanalysis II (Kanamitsu et al.,194

2002). For GCM data, we use Atmospheric Model Intercomparison Project (AMIP)195

experiment data from the Coupled Model Intercomparison (CMIP3) archive, which is196

publicly available at http://www-pcmdi.llnl.gov/ipcc/about ipcc.php. We use AMIP197

data because it is more directly comparable to observations, but recognize that these198

runs neglect the bias induced by ocean coupling. We use data from all 13 models which199

supply Pr from at least one AMIP realization at monthly resolution. In order to increase200

the range of resolutions explored, we also include the lone 50 km resolution GCM (here-201

after GFDL Hi) included in the 1st NARCCAP experiment. Model details are included202

in Table 1.203

Model performance is assessed by comparison against gridded observations. Unfortu-204

nately, precipitation observations are relatively uncertain (Nijssen et al., 2001; Groisman205

et al., 1996; Xie and Arkin, 1995). In an attempt to identify observational uncertainty,206

we include observational data from 6 different sources in this study. These include207

University of Washington (UW; Hamlet and Lettenmaier, 2005), NOAA CPC Unified208

(Unified; Higgins et al., 2000), Climatic Research Unit (CRU) version 2.1 (Mitchell and209
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Jones, 2005), University of Delaware version 1.02 (UDel), Global Precipitation Climatol-210

ogy Project (GPCP) version 2 (Gruber and Levizzani, 2008), and CPC Merged Analysis211

of Precipitation (CMAP; Xie and Arkin, 1997). References for each of these datasets212

are given in Table 2. It is worth noting that the UW dataset is scaled to match the213

Parameter-elevation Regressions on Independent Slopes Model (PRISM) model (Daly214

et al., 1994) in long-term mean; because of this, including PRISM in this study would215

be redundant. Since PRISM adjusts Pr based on topographic factors such as elevation,216

aspect, and slope, the UW data can be considered to have a more sophisticated treat-217

ment of mountainous terrain (which should result in higher Pr than predicted by simple218

interpolation). The raw data for many of these products overlap; differences between219

datasets could reflect variations in interpolation method as much as differences in raw220

data sources. The UW and Unified datasets use data from the National Climatic Data221

Center (NCDC) Cooperative Observer gauge data which has a station density of around222

7000 daily reports over the US. Unified also includes CPC Cooperative stations and223

Higgins et al. (1996) data, which add a significant number of additional stations. CRU224

uses its own gauge dataset that contains around 8,300 monthly measurements world-225

wide. UDel combines Global Historical Climate Network and Legates and Willmott226

(1990) data for a total global station density of over 20,000. GPCP and CMAP both227

use Global Precipitation Climatology Center (GPCC) gauge data (6500-7000 stations228

globally) in combination with data from a variety of satellite platforms.229

UW, Unified, CRU, UDel, and CMAP data do not include corrections for gauge230
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undercatch, while GPCP correct following Legates (1987). This is an important con-231

sideration because high-elevation precipitation during winter is generally in the form of232

snow, which is underpredicted by gauges because it tends to to flow around sensors.233

This means that the Pr observations used here are likely to be underestimates. To our234

knowledge, no estimates of CA-area wintertime gauge bias exist, though Fig. 8 of Adam235

and Lettenmaier (2003) puts December-February zonal-average total undercatch error236

over land in CA latitudes at 15-25%.237

Our comparison focuses on the period 1981 through 1998 because this is the only238

period for which data is available from all sources. We consider winter to consist of239

November through March (NDJFM) because this is the period of significant CA precipi-240

tation (C09 Fig. 3). CA averages for all observational datasets are created following the241

same methods as used for the models.242

4 Results243

4.1 Mean Precipitation244

NDJFM Pr averaged over 1981-1998 is presented for each of the datasets in Fig. 2. In245

order to depict statistical significance graphically, values are given as bias relative to Uni-246

fied (which has NDJFM 1981-1998 Pr of 3.0 mm day−1). Errorbars are 95% confidence247

intervals computed using a 2-tailed t-test applied to the (annual-resolution) timeseries of248

the difference between model and Unified data. A dataset is statistically different from249

Unified if its confidence interval doesn’t include the x-axis. While precipitation itself250
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isn’t appropriate for a t-test because it is zero-bounded and therefore non-normal, bias251

does not suffer from this problem and does follow a normal distribution (not shown).252

Each year is taken to be an independent sample because the 1-lag autocorrelation be-253

tween years is less than 0.3 (generally quite a bit less) for all models while the threshold254

for statistical significance for 18 years of data is 0.4 (Zar, 1999).255

UW, UDel, and CRU have small mean bias (Fig. 2; using them instead of Unified256

would have little effect on our results. GPCP and CMAP, on the other hand, yield257

substantially lower Pr estimates. This could be due to the GPCC gauge data used by258

both projects. This dataset contains fewer stations than used by CRU and many fewer259

stations than Unified UDel, and UW. This would cause a low bias if the omitted stations260

were predominantly in mountainous terrain, where climatological precipitation tends to261

be higher. The use of satellite data could also cause bias: Gruber and Levizzani (2008)262

note that passive microwave estimates sometimes fail to capture orographic enhancement,263

and that this error propagates into the GPCP (and presumably CMAP) final products.264

Because of these shortcomings, it seems likely that GPCP and CMAP estimates of CA265

Pr are too low.266

The size of each confidence interval is related to the correlation between the dataset267

tested and Unified; UW, CRU, and UDel datasets have small intervals because they track268

Unified very well. The fact that these observational datasets are statistically different269

from Unified illustrates the important impact of differing approaches to selecting and270

processing station data. RCMs tend to have smaller confidence intervals than GCMs be-271
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cause they are forced by reanalysis, which ties them more strongly to the current climate.272

GCMs with multiple realizations are an exception to this rule. For these models, real-273

izations are considered to be independent and statistics are computed on the time series274

of bias concatenated over all ensemble members. This approach is reasonable because275

the average pairwise correlation between realizations for a given model is less than 0.072276

for all models except FGOALS. FGOALS runs are correlated at 0.34; its uncertainty277

is probably underestimated here. Low correlation between ensemble members (which278

implies that SST has little effect on simulated CA Pr) was also found in Phillips (2006).279

One potential concern with this study is that the sampling period is relatively short280

and SST forcing leaves the GCMs only weakly constrained, so results may reflect nat-281

ural variability more than model climatology. This is addressed by plotting individual282

ensemble-member values as black dots in Fig. 2. It is clear that in all cases the natural283

variability within an individual model is much smaller than the differences seen between284

models.285

Each color in Fig. 2 indicates a different averaging technique. For UW, CRU, and286

UDel, only masked averaging was used because their native grids are already of compa-287

rable resolution to Unified. For grid spacing less than 3◦, averaging technique does not288

have a strong impact on our conclusions. Note that this does not mean that models are289

actually resolving CA topography correctly, just that little error is induced by averaging.290

Because averaging technique does not make a difference, the rest of this study uses con-291

servative regridding. The 3 coarsest models are omitted from further discussion because292
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they are not adequately resolved.293

An interesting result (which echoes the findings of C09 and other papers noted in294

Section 1) is that all RCMs except HadRM3 and CRCM significantly overpredict win-295

tertime Pr. As noted earlier, observational undercatch error likely exaggerates (but is296

not wholly responsible for) the apparent wet bias. The source of bias is not immediately297

obvious and we leave its identification for future work. Consistency between RCMs is298

important because it suggests that the cause is fundamental to the dynamical down-299

scaling approach rather than arising from the details of a particular code. It is also300

worth noting that spectral nudging used by CRCM and RSM does not seem to have301

a systematic effect on RCM bias - CRCM bias is smallest and RSM bias is among the302

largest.303

GCMs, on the other hand, generally underpredict Pr (though some overpredict and304

a few have larger bias than any RCM). This result contradicts the findings of Coquard305

et al. (2004), who found all Coupled Model Intercomparison Project (CMIP) phase 2306

models to overpredict wintertime Pr by more than 50% and Phillips and Gleckler (2006)307

who found substantial overprediction of west coast January Pr in the CMIP3 models.308

Difference between our study and theirs is seen here to result at least partly from use of309

CMAP and GPCP data as truth in the previous studies. Salathe et al. (2007) also found310

annual average Pr from CMIP3 models to be generally overpredicted using an earlier311

NCEP reanalysis as validation. Fig. 2 shows that reanalysis Pr is not necessarily a good312

surrogate for reality. Another possible reason for differences between our results and313
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those of previous studies is that we use AMIP simulations, while previous work focused on314

coupled ocean-atmosphere GCMs. Lower Pr in AMIP runs is perhaps unsurprising since315

west-coast SSTs are consistently overpredicted in the CMIP3 archive (Solomon et al.,316

2007), which should cause excessive upstream evaporation and resultingly enhanced on-317

shore moisture flux.318

Another interesting feature of Fig. 2 is that GCM bias does not seem to be related319

to model resolution. This suggests that insufficient resolution is not the leading source320

of model bias, implying that better parameterizations - not simply increased resolution321

- are required to improve climate predictions. It should, however, be noted that most322

of the GCMs considered here are too coarse to resolve CA’s mountains. It is possible323

that resolution is important, but must be finer than some threshold to make a difference.324

In this context, it is interesting that the 50 km GFDL Hi model behaves very similarly325

to the RCMs. This suggests that perhaps resolution, not lateral boundary forcing, is326

responsible for elevated Pr in regional models.327

Another key finding of this study is that RCM bias does not appear to be systemat-328

ically smaller than that from GCMs. As noted in the introduction, this does not imply329

that downscaling is useless (since high-resolution output is itself very valuable), but it330

does suggest that the “upscale benefit” from more realistically simulating processes and331

terrain does not seem to be realized in CA. Identifying why increased resolution doesn’t332

translate to better simulation would be a big step forward for regional climate modeling.333
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4.2 Precipitation Distributions334

Fig. 3 shows the CA-average Pr exceedance probability distribution for each dataset335

available at daily resolution. Good agreement between UW and Unified suggests a336

close understanding of the true distribution, though it should be remembered that both337

datasets are based on very similar raw data and both are subject to the same systematic338

biases (such as undercatch).339

It is interesting that all RCMs except CRCM overpredict heavy (>20 mm day−1) Pr340

and 4 of 6 RCMs underpredict Pr frequency (days with Pr>0.1 mm day−1). It is also341

worth noting that low mean Pr in HadRM3 appears to result from partial compensation342

between underprediction of weak events and overprediction of strong events, while CRCM343

does relatively well in the mean because it doesn’t overpredict strong events, although344

it strongly overpredicts Pr frequency.345

A problem with using CA averages to evaluate extreme Pr is that overprediction346

could be due to exaggerated storm spatial extent rather than overpredicted local in-347

tensity. Similarly, CA-average frequency bias could be driven by errors in the spatial348

distribution of rain rather than its frequency of occurrence. To clarify the source of349

bias, we plot in Fig. 4 the fraction of RCMs and GCMs overpredicting frequency or350

99th percentile Pr as a function of location. In order to keep our analysis resolution-351

independent, these graphics were created by comparing each model against Unified data352

conservatively regridded to that model’s grid. Composite maps were then created by353

conservatively regridding each model’s bias map to the Unified grid and counting the354
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number of models with positive bias for each resulting cell. GFDL Hi was omitted from355

this analysis due to technical problems. This graphic shows that almost all RCMs over-356

predict the magnitude of 99th percentile Pr events over most of CA, confirming our357

impression from Fig. 3 that overprediction of extreme wet events is the source of the358

bias found in Sect. 4.1. RCM Pr frequency is generally underpredicted; as in C09,359

compensation between frequency and intensity errors acts to reduce RCM mean-state360

Pr bias. Interestingly, RCMs seem to underpredict heavy Pr in the southwestern portion361

of the state. Replacing Unified data with UW observations reduces the areal extent but362

not the existence of this underpredicted region1. Reasons for this difference are unclear,363

but could be due to differences in topography or to greater tropical influence at lower364

latitudes. Underprediction of Southern CA mean Pr was also noted in Sect. 2.365

Fig. 4 shows GCMs to be much less consistent in their biases than RCMs. This is also366

seen in Fig. 3, which shows that some GCMs yield very realistic probability distributions367

while others behave quite poorly. In general, model resolution does not appear to be368

a good predictor of GCM skill. The GFDL Hi model, however, again looks similar to369

the RCMs. This suggests that resolution rather than lateral boundary forcing may be370

responsible for RCM bias, and that the difference between 50 and 100 km resolution may371

be important even if resolution differences between coarser models don’t appear to be.372

Our GCM results contrast with previous studies, where strong rainfall was found to373

1Using UW instead of Unified data has no qualitative effect on our RCM conclusions. We chose

Unified data because lack of UW data just off the coast caused problems when regridding observations

to coarse GCMs.
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be too infrequent and light rainfall too prevalent (even using the same model versions374

considered here). Such a bias pattern is expected if high-resolution observations are375

compared against lower-resolution models, since averaging to coarser resolution tends to376

dilute maxima and minima. This dilution probably explains GISS ER bias in Dai (2006)377

since GISS ER at 4◦ x 5◦ resolution is compared to observations at 2.5◦ x 2.5◦ resolution,378

but fails to explain bias in the 3 other models considered in Dai, which have resolutions379

similar to the observations. Further, Sun et al. (2006) found little difference between the380

frequency and intensity2 of light (1-10 mm day−1) Pr at station, 1◦, and 3◦ resolutions,381

and found the majority of models to overpredict light-Pr statistics even when compared382

to the 3◦ observations. Resolution was found to matter more for heavy (>10 mm day−1)383

Pr intensity, but even compared to the 3◦ data, many models underpredicted heavy Pr.384

Results from Sun are not, however, directly comparable with the current study because385

Sun focused on global maps of June-August Pr and used color scales tuned to pick up386

global maxima/minima rather than midlatitude detail. Still, it seems clear that factors387

other than model/observation resolution discrepancies are playing a role in the difference388

between our results and those of previous studies. As noted earlier, one reasonable and389

testable hypothesis is that AMIP models are better than coupled ocean-atmosphere390

models at reproducing Pr statistics.391

2intensity is defined as the average magnitude of rain events.
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4.3 Variability392

Temporal variability in the models is investigated in Fig. 5. This graphic shows the393

standard deviation of NDJFM-averaged Pr and (where available) the standard deviation394

of wintertime-only daily Pr. We focus on the variability of the CA average rather than395

the average of CA variability because the latter measure would be resolution dependent.396

Using only rainy days to compute the daily variance increases the HadRM3 value to 6397

mm day−1 but otherwise does not significantly impact the results.398

Observational estimates are again consistent, suggesting that we can say with some399

confidence whether model variability is too high or too low. HadRM3 and CRCM results400

look relatively good at both daily and annual timescales but the remaining 4 RCMs401

overpredict variance. This is perhaps not surprising since the models which overpredict402

variance also overpredict climatological Pr and especially the frequency of high rain rates.403

GCMs, on the other hand, generally underpredict variance at both daily and interannual404

timescales with higher resolution offering no improvement. This is consistent with the405

findings of Dai (2006). Daily variability in the GFDL Hi model is similar to the RCMs406

(as might be expected from the previous results shown here), but interannual variance407

is underpredicted, similar to the other GCMs.408

5 Conclusions409

In this study, we evaluate the effect of resolution on CA wintertime Pr as simulated410

by a variety of regional and global models. We note that resolution is expected to add411
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value through more accurate spatial distribution and through more realistic physical412

representation of terrain and physical processes. We focus on this second benefit by413

evaluating averages over the state of CA. We find that the CA average is well resolved414

by all models with grid spacing finer than 3◦ in the sense that the CA mean for these415

models is essentially independent of averaging method. This does not mean that GCMs416

are able to resolve the terrain and processes important to CA regional climate, though417

we find little evidence that adding these details through finer resolution improves model418

performance at the CA-average scale. The fact that improved resolution doesn’t translate419

to improved simulation is a key finding of this study. This result is somewhat surprising420

because Pr is strongly affected by topography, so increased the realism of mountain421

terrain should provide a huge advantage to high-resolution models.422

Understanding and removing the source of bias at high resolution is critical for accu-423

rate regional climate prediction. While identifying the source of this bias is beyond the424

scope of this paper, we do offer some clues. Consistency between RCMs suggests that425

the source of bias is fundamental rather than tied to the particulars of a certain code.426

Further, wet bias seems to be associated with strong Pr events, while Pr frequency is427

generally underpredicted. The fact that the 50 km GFDL Hi GCM behaves similarly to428

the RCMs hints that resolution - not boundary forcing - is responsible for Pr bias. These429

features suggest that detailed analysis of a series of extreme-precipitation case studies430

at various resolutions would be a useful avenue of research.431

Another important finding of this work is that GPCP, CMAP, and NCEP II show432
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a dry bias in CA wintertime mean-Pr relative to the rest of the observational datasets.433

Previous studies concluding that GCMs overpredict Pr along the west coast of the U.S.434

were based on comparison against these datasets; based on the more accurate UW, Uni-435

fied, CRU, and UDel datasets, the GCMs considered here actually tend to underpredict436

CA-mean precipitation. Additionally, we find no evidence of overpredicted rainfall fre-437

quency or underpredicted heavy precipitation in our global simulations (in contrast to438

previous work), though we do note that these simulations do underestimate daily and439

interannual Pr variability (which is consistent with previous work). Our differing con-440

clusions may stem partially from careful use of resolution-independent metrics. This441

is unlikely to provide a complete explanation, however, and we hypothesize that use of442

specified-SST runs is also playing a role by removing warm SST biases offshore and hence443

reducing moisture flux into CA.444

Finally, we note that model bias and intermodel agreement both provide a sense of445

the uncertainty inherent in Pr prediction from climate models. Based on the results446

presented here, we conclude that significant caution should be taken in interpreting447

model results for Pr.448
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F. Giorgi, S. Hagemann, M. Hirschi, R. Jones, E. Kjellström, G. Lenderink, B. Rockel,519

E. Sánchez, C. Schär, S. I. Seneviratne, S. Somot, A. van Ulden, and B. van den Hurk,520

2007: An inter-comparison of regional climate models for Europe: model performance521

in present-day climate. Clim. Change, 81, 31–52.522

27



Jones, P. W., 1999: First- and second-order conservative remapping schemes in spherical523

coordinates. Mon. Wea. Rev., 127, 2204–2210.524

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and525

G. L. Potter, 2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc.,526

1631–1643.527

Legates, D. R., 1987: A climatology of global precipitation. Pub. in Climat., 40, 85 pp.528

Legates, D. R. and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-529

corrected, global precipitation. Int J. Climatol., 10, 111–127.530

Leung, L. R. and S. Ghan, 1995: A subgrid parameterization of orographic precipitation.531

Theor. Appl. Climatol., 52, 95–118.532

Leung, L. R. and Y. Qian, 2003: The sensitivity of precipitation and snowpack simula-533

tions to model resolution via nesting in regions of complex terrain. J. Hydromet., 4,534

1025–1043.535

Leung, L. R., Y. Qian, J. Han, and J. O. Roads, 2003: Intercomparison of global re-536

analysis and regional simulations of cold season water budgets in the Western United537

States. J. Hydromet., 4, 1067–1087.538

Mass, C., , D. Ovens, K. Westrick, and B. Colle, 2002: Does increasing horizontal539

resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407–430.540

28



Mitchell, T. D. and P. D. Jones, 2005: An improved method of constructing a database541

of monthly climate observations and associated high-resolution grids. Int. J. of Cli-542

matology , 25, 693–712.543

Nijssen, B., G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann, and E. F. Wood, 2001:544

Predicting the discharge of global rivers. J. Climate, 14, 3307–3323.545

Phillips, T. J., 2006: Reproducibility of seasonal land surface climate. J. of Hydromet.,546

7, 114–136.547

Phillips, T. J. and P. J. Gleckler, 2006: Evaluation of continental precipitation in 20th548

century climate simulations: the utility of multimodel statistics. Water Resources549

Research, 42, W03202, doi:10.1029/2005WR004313.550

Pope, V. D. and R. A. Stratton, 2002: The processes governing horizontal resolution551

sensitivity in a climate model. Clim. Dyn., 19, 211–236.552

Rasmussen, R., 2009: High resolution simulation of seasonal snowfall over Colorado and553

some impacts of climate change, submitted, J. Clim.554

Rauscher, S. A., E. Coppola, C. Piani, and F. Giorgi, 2009: Resolution effects on regional555

climate model simulations of seasonal precipitation over europe, in press, Clim. Dyn.556

doi:10.1007/s00382-009-0607-7.557

Rojas, M., 2006: Multiply nested regional climate simulation for southern South Amer-558

ica: sensitivity to model resolution. Mon. Weath. Rev., 134, 2208–2223.559

29



Salathe, E., P. W. Mote, and M. W. Wiley, 2007: Review of scenario selection and560

downscaling methods for the assessment of climate change impacts on hydrology in561

the United States Pacific Northwest. Int. J. Climatol., 27, 1611–1621.562

Seth, A., S. A. Rauscher, S. J. Camargo, J.-H. Qian, and J. S. Pal, 2007: RegCM3563

regional climatologies for South America using reanalysis and ECHAM global model564

driving fields. Clim. Dyn., 28, 461–480.565

Shukla, J., R. Hagedorn, B. Hoskins, J. Kinter, J. Marotzke, M. Miller, T. Palmer,566

and J. Slingo, 2009: Revolution in climate prediction is both necessary and possible.567

A declaration at the World Modeling Summit for Climate Prediction. Bull. Amer.568

Meteor. Soc., 90, 175–178.569

Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and570

H. Miller, eds., 2007: Climate Change 2007: The Physical Science Basis. Contribution571

of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel572

on Climate Change. Cambridge University Press, Cambridge, United Kingdom and573

New York, NY, USA, 996 pp.574

Staniforth, A., 1997: Regional modeling: A theoretical discussion. Meteorol. Atmos.575

Phys., 63, 15–29.576

Sun, Y., S. Solomon, A. Dai, and R. W. Portman, 2006: How often does it rain. J.577

Climate, 19, 916–934.578

30



Sylla, M. B., E. Coppola, L. Mariotti, F. Giorgi, P. M. Ruti, A. Dell’Aquila, and X. Bi,579

2009: Multiyear simulation of the African climate using a regional climate model580

(RegCM3) with the high resolution ERA-interim reanalysis, in press, Clim. Dyn.581

doi:10.1007/s00382-009-0613-9.582

Tibaldi, S., T. N. Palmer, C. Brankovic, and U. Cubasch, 1990: Extended-range pre-583

dictions with ECMWF models: Influence of horizontal resolution on systematic error584

and forecast skill. Q.J.R. Meteorol. Soc, 116, 835–866.585

Xie, P. and P. A. Arkin, 1995: An intercomparison of gauge observations and satellite586

estimates of monthly precipitation. J. Appl. Meteor., 34, 1143–1160.587

—, 1997: Global precipitation: a 17-year montly analysis based on gauge observations,588

satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–589

2558.590

Zar, J. H., 1999: Biostatistical Analysis . Prentice Hall, Upper Saddle River, NJ, 4th591

edition.592

31



List of Figures593

1 Illustration of our gridding methodologies using the CNRM model as an594

example. For each method, the CA average is the area-weighted average595

of all colored cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37596

2 95% confidence intervals for bias in NDJFM 1981-1998 precipitation aver-597

aged over CA using the methods from Fig. 1. In this graphic, Unified data598

is used as “truth” and datasets are separated by type (Obs=Observations,599

Re=Reanalysis, RCMs, GCMs). Within each type, datasets are arranged600

from lowest to highest resolution (resolutions are indicated at top). Aver-601

ages over ensemble members are made where possible; in these cases num-602

ber of members is indicated after model name and individual ensemble-603

member values are presented as black dots. . . . . . . . . . . . . . . . . . 38604

3 Cumulative probability distributions for conservatively-averaged daily Pr,605

separated by data type (note logarithmically-scaled color axis). Frequency606

of precipitation >0.1 mm day−1 is overplotted in blue with scale on right. 39607

4 Top panels: percentage of models overpredicting Pr frequency (defined as608

Pr>0.1 mm day−1). Bottom panels: 99th percentile Pr. Unified data is609

taken as truth. RCMs are compared in the left panels and GCMs in the610

right panels. See text for details. . . . . . . . . . . . . . . . . . . . . . . 40611
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5 Pr standard deviation for NDJFM-averaged data (squares) and daily data612

within NDJFM (triangles). Daily values for models lacking daily-resolution613

data are mapped to zero for reference. . . . . . . . . . . . . . . . . . . . 41614
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Table 1: Data details. Acronyms used below: UQAM = Université du Québec à

Montréal, UC = University of California, NW = Northwest, CCSM = Center for Cli-

mate System Research, NIES = National Institute for Environmental Studies, FRCGC =

Frontier Research Center for Global Change, NCAR = National Center for Atmospheric

Research, GFDL = Geophysical Fluid Dynamics Laboratory, IAP = Institute of Atmo-

spheric Physics, MRI = Meteorological Research Institute, IPSL = Institut Pierre Simon

Laplace, NASA = National Aeronautics and Space Administration, GISS = Goddard

Institute for Space Studies, INM = Institute for Numerical Mathematics.

34



Type Name Center (Country) Res (deg) % boundry cells

RCMs CRCM Ouranos/UQAM (Canada) 0.36x0.45 37.7

RSM UC San Diego/Scripps (USA) 0.36x0.48 37.8

HadRM3 Hadley Centre (UK) 0.42x0.52 41.0

RegCM3 UC Santa Cruz (USA) 0.42x0.54 42.3

WRF Pacific NW National Lab (USA) 0.44x0.56 42.4

MM5 Iowa State University (USA) 0.44x0.56 42.4

GCMs GFDL Hi GFDL (USA) 0.50x0.63 41.6

MIROC Hi CCSM/NIES/FRCGC (Japan) 1.12x1.13 72.0

CCSM NCAR (USA) 1.40x1.40 77.1

HADGEM Met Office (UK) 1.25x1.88 79.4

BCC Beijing Climate Center (China) 1.87x1.88 90.9

ECHAM5 Max Plank Institute (Germany) 1.87x1.88 90.9

GFDL GFDL (USA) 2.02x2.50 93.8

CNRM Meteo France (France) 2.79x2.81 100

FGOALS IAP (China) 2.79x2.81 100

MIROC Med CCSM/NIES/FRCGC (Japan) 2.79x2.81 100

MRI MRI (Japan) 2.79x2.81 100

IPSL IPSL (France) 2.53x3.75 100

GISS NASA/GISS (USA) 4.00x5.00 100

INM INM (Russia) 4.00x5.00 100

615
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Table 2: Observational datasets. WCRP = World Climate Research Program.

Name Center (Country) Res (deg) Reference

UW University of Washington (USA) 0.13x0.13 www.hydro.washington.edu/Lettenmaier/

Data/gridded/index hamlet.html

Unified NOAA (USA) 0.25x0.25 www.cdc.noaa.gov/cdc/data.unified.html

CRU Climatic Research Unit (UK) 0.50x0.50 www.cru.uea.ac.uk/ timm/grid/

CRU TS 2 1.html

UDel University of Delaware (USA) 0.50x0.50 www.cdc.noaa.gov/data/gridded/

data.UDel AirT Precip.html

CMAP Climate Prediction Center (USA) 2.50x2.50 www.cdc.noaa.gov/data/gridded/

data.cmap.html

GPCP WCRP (international) 2.50x2.50 www.gewex.org/gpcp.html
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Figure 1: Illustration of our gridding methodologies using the CNRM model as an ex-

ample. For each method, the CA average is the area-weighted average of all colored

cells.
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Figure 2: 95% confidence intervals for bias in NDJFM 1981-1998 precipitation averaged

over CA using the methods from Fig. 1. In this graphic, Unified data is used as “truth”

and datasets are separated by type (Obs=Observations, Re=Reanalysis, RCMs, GCMs).

Within each type, datasets are arranged from lowest to highest resolution (resolutions

are indicated at top). Averages over ensemble members are made where possible; in these
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Figure 3: Cumulative probability distributions for conservatively-averaged daily Pr, sep-

arated by data type (note logarithmically-scaled color axis). Frequency of precipitation

>0.1 mm day−1 is overplotted in blue with scale on right.
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RCMs are compared in the left panels and GCMs in the right panels. See text for details.
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Figure 5: Pr standard deviation for NDJFM-averaged data (squares) and daily data

within NDJFM (triangles). Daily values for models lacking daily-resolution data are

mapped to zero for reference.
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